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Results of experiments conducted under simple conditions have great significance for 
the complex problem of turbulent flow which still does not have a satisfactory solution. 
Thus, the turbulent flow is appreciably simplified if even one term in the energy equation 
for turbulent fluctuations is absent: convection, diffusion, production, or dissipation. One 
of the simplest is the flow past a uniform grid where there is no diffusion or production of 
turbulent energy and moreover all necessary conditions for isotropic fluctuations could be 
satisfied. 

Flow without diffusion of turbulent energy was realized, e.g., in [I]. Flow without 
shear in the mean flow, and consequently, without turbulent energy production was first 
studied experimentally in [2]. These conditions also exist in axisymmetric hydrodynamic wake 
with zero excess momentum and an experimental result on this problem is given in [3]. A grid 
vibrating perpendicular to its plane in a reservoir [4] has a very simple turbulent field. 
In this case the mean velocity is zero and there is a region in which only diffusion and 
disipation of energy are present. 

A description along with certain results of studies on one more simple turbulent flow 
without a shear in the mean velocity and in which convection and diffusion are one-dimensional 
are presented below. It appears to be most interesting for the analysis of problems on inter- 
actions of turbulent fields with each other, e.g., problems on the evolution of boundary 
layer, jet, or wake in turbulent free stream. With certain additional modifications this 
flow also makes it possible to effectively analyze questions on the effect of density strati- 
fication on turbulence. 

The basis for the present method to realize shearless turbulence is the experimental fact 
[5] that the pressure drop in uniform hydrodynamic grid which depends in general on the param- 
eters Re = UoM/v and M/D, where U0 is the free stream velocity, D is the diameter of the rods 
in the grid, M is the distance between axes of the rods, and ~ is the kinematic viscosity of 
the fluid, ceases to depend on Reynolds number Re if it is sufficiently large. For such an 
asymptotic condition for Re it is possible to change the diameter and the pitch of rods in 
separate segments of the grid, maintaining the condition M/D = const, and this does not lead 
to the appearance of transverse pressure gradients and gradients in mean velocity in the flow 
behind the grid. At the same time it is possible to vary within a wide range the nonunifor- 
mity in the intensity across the flow, the characteristic scale and other statistical char- 
acteristics of fluctuations, i.e., it is possible to create a specific stratification of 
turbulence characteristics. If, in addition, some of the rods are heated, then there will 
also be a stratification in density: stable or unstable, vertical or horizontal, continuous 
or in steps, depending on how heating is carried out. 

Results of studies on isothermal flow past a grid consisting of two parts (Fig. I) are 
presented in this paper. The upper half of the grid had rods with diameter Dl = I mm and the 
distance between them MI = 5.5 mm, the lower half had rods with D2 = 5DI and M2 = 5MI. Hori- 
zontal and vertical rods were located in different planes (the so-called biplane configuration 
of the grid). The grid was placed in the test section of a low-turbulence wind tunnel with a 
characteristic transverse dimension of 40 cm and a length of 4 m. Tests were conducted at a 
free stream velocity of 15 m/sec and the air temperature was 19~ Additional contraction of 
the flow behind the grid was intended to improve the level of isotropy of fluctuations (see 
details in [6]), so that the mean velocity in the measurement section U = 1.56U0. 

The connection of the two halves of the grid required some care because these could lead 
to local distortion of the mean velocity field. As a result of testing a number of variants 
it was found that good results were obtained by a certain reduction in the diameter of the 
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Fig. 2 

horizontal rod D2 closest to the connection line while simultaneously reducing the first gap 
M2 between the horizontal rods. The coordinate y is measured vertically above the juncture 
line, x is downstream along the flow. The flow is completely uniform along the z axis in the 
statistical sense, i.e., all its statistical characteristics are invariant with respect to 
displacement along this coordinate. 

The measurement of velocity was carried out with standard DISA hot-wire anemometer equip- 
ment. Histomat-S of the firm Intertechnique was used for the statistical analysis of the sig- 
nals from the anemometer. Mean velocities were also measured with Pitot tube. The error in 
the experimental data presented here was estimated by the variance not exceeding 2% for the 
mean flow and 4% for the intensity of fluctuations. These estimates were obtained on the 
basis of results from repeated measurements at different points in the flow at the same flow 
conditions. 

The degree of uniformity in mean velocity U along y and x in the realized flow is illu- 
strated by experimental data for velocity profiles U(y) for a number of fixed values of x/M~ 
as shown in Fig. 2 (the points I-4 correspond to x/Ml = 40, 80, 160, and 240). It is possible 
to observe that conditions for zero shear in the flow are quite accurately met. 

"Profiles of the dispersion of fluctuations in the longitudinal velocity component <u2> 
are shown in Fig. 3 (angular brackets denote the averaging operator, the points I,...,6 cor- 
respond to x/M1 = 40,...,240, with an interval of 40). They show that along with the pro- 
duction downstream due to viscous effects, the initial nonuniformity in the direction of <u2> 
along y is gradually smoothened out because of turbulent diffusion. Here the mean point Y0 
of the profile <u2>, i.e., that value of y where <u2> = u~ = (u~ + u!)/2 (the quantities u S 
and ul are explained in Fig. I), is more and more displaced towards the direction of lower 
turbulence intensity with an increase in x. This interesting feature of the diffusion pro- 
cess should be taken into account in its mathematical modeling. 

It is interesting to consider whether it is possible or not to express the <u2>-profile 
obtained at various values of x/M1, in a universal form, by making appropriate use of the 
transformation in stretching and displacement along y. This question of affine transforma- 
tion of profiles is closely associated with the existence of similarity solutions of the 
equations for the quantities e = (u 2 + v 2 + w2)/2 (v and w are the projections of fluctuating 
velocity component on y and z axes, respectively), since the equation for <e> and <u2> are 
similar in form and in mathematical modeling of turbulence the equation for <e> is mainly 
used. 

Since all statistical characteristics of the given flow are uniform along z, the mean 
velocity lies along x and y, and since the flow is stationary in the statistical sense, the 
energy equation for turbulence <e> [5] can be written in the form 

ax u ~-+e --Try -~-+e +~i--~2, 
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where p is the pressure fluctuation; p is the fluid density; i, j = I, 2, 3; summation is 
carried out with repeated indices; in order to shorten the expression for the last relation, 
the notation for the system of coordinates is changed: x = xz, y = x2, etc. 

Further simplifications of (I) are possible for certain asymptotic conditions when in- 
dividual terms happen to be an order of magnitude smaller than others and they could be ne- 

glected. For example, at fairly large values of Re and for sufficiently large distances from 
the grid 

( u ~ / p  + e)> << U<e),  

so that (I) takes the form 

a < v ( . _ ~ . + e ) > _ 8  ' (2) U a <~> ~_ av 

where e = -ez + ~2. The left-hand side of this equation describes convective transfer, the 
first term on the right-hand side denotes diffusion. The last term is basically determined 
by energy dissipation. Under certain conditions it is also possible to simplify the discus- 
sion term and the expression for e by throwing out higher-order terms. However, additional 
experimental data are necessary for corresponding evaluations and to analyze the problem on 
the existence of similarity solutions there is no need for further 

<e> = ~ P u~  V** A (n)t ( 3 )  U , l ~  (n), v T + e = . / ~  (n) ,  e = 

= (Y - -  Y~ (4 )  

so that 

U ,  = c~ [ (z  - -  xo)/c~] ~, l ,  = c3 [(x - -  xo)/c~l", " ( 5 )  

Yo = C41, + cs, n - - r e = l ,  

Ck, x0, m, and n are quantities that do not depend on x and y. It is interesting to note the 
presence in Eq. (4) of the term y0(x) whose significance was explained above. 

The above relations do not allow an independent determination of the indices m and n. 
In order to achieve this it is necessary to obtain additional relations. Here the following 
assumption is made 

R e ,  = U , l , / ~  = c o n s t .  

It is based on the existing experimental data in the literature on two-dimensional free tur- 
bulent flows (mixing layers, jets, and wakes) and finds indirect confirmation in experimental 
data pertaining to the present problem. It follows from this assumption that m + n = 0. This 
predetermined the exponent in (5): m = --I/2, n = 1/2. In order to complete the analysis of 
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similarity solutions to Eq. (2) it is necessary to determine the nature of functions fl, f2~ 
and f3. But this requires the introduction of closure relations for Eq. (2) which is out of 

scope of the present study. 

The experimental data on the present flow are shown in Fig. 4 in similarity variables 
for <u2>. u0 determined above is used for U,, I, is the characteristic half-width of the 
profile <u2>, i.e., the difference 6 = y2(x) -- yl(x), where Yl and y2 are determined by the 

conditions 

<w> = (4 + y = <w> = (34 + y = 

It is possible to observe that the experimental data do not contradict the assumption on 
similarity profiles <u2>. It is worth noting the absence of symmetry in the profiles of <uZ>, 
a fact not often encountered in diffusion process. It should be taken into account in mathe- 

matical modeling. 

The dependence of (U/u0) 2 and (6/MI) 2 on x/Ml is shown in Fig. 5. The fact that experi- 
ment~l points in such a representation are concentrated well along straight lines confirms 
the nature of dependence of u0 and 6 on x, in particular, the above-mentioned power relation. 
But there is also one disagreement with analytical results of similarity solutions: the value 
of x0 determined as the point of intersection of the straight lines in Fig. 5 with the x axis 
happen to be different for the functions u0(x) and ~(x) in the experimental data whereas they 
should be the same according to the analysis. 

The following empirical relations have been obtained using the method of least squares: 

uo/U = O.i5(x/M~ - -  28,3) -~ 81M1 = 0,25(x/M1 + 5.97) ~ yolM1 = 0.858/M~ - -  t .40. (6)  

The question of their universality for different grids remains open until suitable experiments 
are conducted. This question is of great independent interest since it is closely associated 
with the characteristics of relaxation processes in turbulent flows. At present there is an 
accumulation of sufficiently large experimental data (see, e.g., [7]) on the fact that tur- 
bulence has surprisingly long memory of the conditions of its formation, a fact that con- 
siderably complicates its mathematical modeling. It is not excluded that even in the present 
case, by some changes in the normalizing scales U and MI in Eq. (6), it may be possible to 
obtain universality of these relations for different grids. 

Typical results from the measurements of one-dimensional probability densit~_~distribu- 
tions for the fluctuations of longitudinal velocity component ~(u/~), where a = #<u2> are shown 
in Fig. 6. They correspond to the section x/Ml = 160. The curve I corresponds to such large 
values of • where turbulent field generated by different parts of the grid do not interact 
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with each other and are isotropic. Here the one-dimensional probability density distribution 
is Gaussian. 

The curve 2 in Fig. 6 is obtained for y/MI = 3.64 inside the mixing zone. It strongly 
differs from Gaussian distribution. Its skew is -0.66, excess is 2.03 whereas for Gaussian 
distribution they are zero. Such a character of @ in the mixing zone is associated with the 
peculiar intermittency of the flow when large and stronger eddies produced by the lower part 
of the grid alternate with smaller and weaker eddies generated by the upper half of the grid. 
The fact that intermittency of eddies of different nature leads to a difference in the dis- 
tribution from Gaussian was demonstrated in [8]. This strongly complicates the mathematical 
modeling of turbulent flows. In order to describe them it is necessary to take up not only 
arithmetical but also logical summation of fluctuations from various sources. The intermit- 
tency of fluctuations expressed in probability distributions at such large distances from the 
grid indicates that turbulent eddies retain their individuality very long which is associated 
with the memory of turbulence about the conditions of their formation. 
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